Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
These data correspond to the article “Deep Nitrogen Fluxes and Sources Constrained by Arc Lava Phenocrysts” by Hudak et al. submitted to Geophysical Research Letters. Table S1 includes N-He-Ar data for FIs in phenocrysts from mafic are lavas and tephras. Table S2 contains the corrected N2/3He data used for volcanic arc N flux calculations and the arc-averaged mean N arc flux. Table S3 summarizes previous literature estimates of N fluxes and the data used for those calculations. Table S4 provides the N concentrations, He concentrations, N isotope compositions of the mantle, sediments, and altered oceanic crust, as well as sediment thicknesses. Finally, Table S5 gives information about the sources of the mineral separates used for these analyses.more » « less
-
Abstract Magma‐water interaction can dramatically influence the explosivity of volcanic eruptions. However, syn‐ and post‐eruptive diffusion of external (non‐magmatic) water into volcanic glass remains poorly constrained and may bias interpretation of water in juvenile products. Hydrogen isotopes in ash from the 2009 eruption of Redoubt Volcano, Alaska, record syn‐eruptive hydration by vaporized glacial meltwater. Both ash aggregation and hydration occurred in the wettest regions of the plume, which resulted in the removal and deposition of the most hydrated ash in proximal areas <50 km from the vent. Diffusion models show that the high temperatures of pyroclast‐water interactions (>400°C) are more important than the cooling rate in facilitating hydration. These observations suggest that syn‐eruptive glass hydration occurred where meltwater was entrained at high temperature, in the plume margins near the vent. Ash in the drier plume interior remained insulated from entrained meltwater until it cooled sufficiently to avoid significant hydration.more » « less
An official website of the United States government
